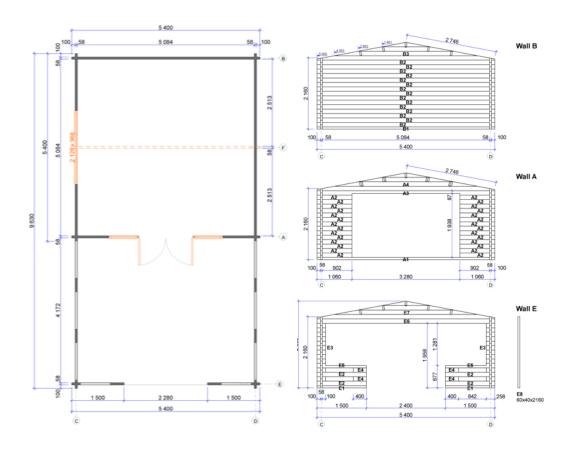


Stärkeberechnung für Holzgartenhausdach


Kompanie: Revismo OÜ (www.revismo.com)

Ingenieur: Mirko Arras (39108154931)

Klient: Tuindeco International BV (www.tuindeco.com)

Datum: 18.03.2019

Produkt: Sheffield

1. Ausgangswerte:

Breite im Durchschnitt (b)	58	mm
Höhe im Durchschnitt (h)	145	mm
		1111111
Stützweite (L)	4479	mm
Trägerabstand (s)	982	mm
Stützlänge (I)	58	mm
Stärkeklasse	EN 13727	

Normative Belastungen, die auf das Dach einwirken:

Belastung durch Eigengewicht	g _k	0,16	kN/m²
Windlast	q _{wind,k}	0,32	kN/m²
Schneelast	q schnee,k	0,60	kN/m²

2. Materialeigenschaften

2.1 Normative Eigenschaften

Normative Eigenschaften des Materials

Biegestärke	f _{m,k}	24	N/mm ²
Schnittstärke	$f_{v,k}$	4	N/mm ²
Druckfestigkeit	f _{c,90,k}	2,5	N/mm ²
Durchschnittliches Elastizitätsmodul bei Längsschnitt	E _{m,0,mean}	11000	N/mm ²
5%-Wert des Elastizitätsmoduls bei Längsschnitt	E _{m,0.5,k}	7400	N/mm ²

2.2 Berechnete Eigenschaften

Dauerhaftigkeitsklasse der Belastungen		Kurzzeitig
Verwendungsklasse		2
Teilsicherheitsbeiwert des Materials	γm	1.3
Modifikationsfaktor	k _{mod}	0,9
Querschnittsfaktor	k _h	1,27
Systemstärkefaktor	k _{sys}	1,1

Berechnete Eigenschaften des Materials:

Biegestärke:
$$f_{m,d}=(k_{mod}*k_h*k_{sys}*f_{m,k})/\gamma_m$$
 $f_{m,d}=$ 23,212 N/mm²

Schnittstärke:
$$f_{v,d} = (k_{mod} * k_{sys} * f_{v,k})/\gamma_m$$
 $f_{v,d} = 3,05$ N/mm²

Druckfestigkeit:
$$f_{c,90,d} = (k_{mod} * k_{sys} * f_{c,90,k})/\gamma_m$$
 $f_{c,90,d} = 1,90$ N/mm²

3. Trägerbelastung

Normative Belastungen, die auf den Träger einwirken:

Belastung durch Eigengewicht:
$$g_k^* = g_k^* s$$
 $g_k^* = 0,16$ N/mm

Windlast:
$$q_{wind,k}^* = q_{wind,k}^* s$$
 $q_{wind,k}^* = 0.3142$ N/mm

Schneelast:
$$q_{schnee,k}^* = q_{schnee,k}^* s$$
 $q_{schnee,k}^* = 0,59$ N/mm

4. Berechnung im Tragegrenzzustand

- 4.1 Querschnittkontrolle
- 4.1.1 Berechnete innere Spannungen

Auf den Träger wirken in STR-Belatungskombinationen die berechneten summierten Belastungen:

a) Dominierende variable Belastung ist Wind:

$$P_{d} = \gamma_{G,1} * g_k^* + \gamma_Q^* q_{wind,k}^* + \gamma_Q^* \Psi_{0,schnee}^* q_{schnee,k}^*$$

$$P_d = 1,102 \text{ kN/m}$$

Wird nicht entscheidend!

b) Dominierende variable Belastung ist Schnee:

$$P_d = \gamma_{G,1} * g_k^* + \gamma_Q * q_{schnee,k}^* + \gamma_Q * \Psi_{0,wind} * q_{wind,k}^*$$

$$P_d = 1,355 \text{ kN/m}$$

Wird entscheidend!

c)	Überprüfung der Berechnungssituation, bei der nur die Belastung durch Eigengewicht
	betrachtet wird:

$$P_d = \gamma_{G,1} * g_k^*$$

 $P_d = 0.2121 \text{ kN/m}$

Wird nicht entscheidend!

Berechnete innere Spannungen (maximal):

Biegemoment:

 $M_d = (P_d * L^2)/8$

 $M_d = 3,398 \text{ kNm}$

Querkraft:

 $V_d = (P_d * L)/2$

 $V_d = 3,035 \text{ kN}$

4.1.2 Kontrolle zur Biegung

Stärkebedingung: $\sigma_{m,d} < f_{m,d}$

Querschnittswiderstandsmoment:

 $W=(b*h^2)/6$

 $W = 203242 \text{ mm}^3$

Berechneter Biegedruck:

 $\sigma_{m,d} = M_d/W$

 $\sigma m, d = 16,7 \text{ N/mm}^2$

Kontrolle der Biegedrucke:

= 16,7 N/mm ²	< f _{m,d} =	23,212 N/mm ²
--------------------------	----------------------	--------------------------

PASST!

4.1.3 Ko	ntrolle	zur \	Versch	niebung
----------	---------	-------	--------	---------

Stärkebedingung: $\tau_d < f_{v,d}$

Querschnittsfläche:

A=b*h

A= 8410 mm²

Berechneter Verschiebungsdruck:

 $\tau_d = (3/2)*(V_d/A)*(1/k_{cr})$

 $\tau_{d} = 0.81 \text{ N/mm}^{2}$

Kontrolle des Verschiebungsdrucks:

T _d = 0,81 N	I/mm ² <	$f_{v,d}=$	3,05	N/mm ²
-------------------------	---------------------	------------	------	-------------------

PASST!

4.1.4 Kontrolle zum Druck (im Stützbereich)

Stärkebedingung: $\sigma_{c,90,d} < k_{c,90} * f_{c,90,d}$

Effektive Druckfläche:

 $A_{ef} = b*I$

 $A_{ef} = 3364 \text{ mm}^2$

Berechnete Druckspannung:

 $\sigma_{c,90,d}$ = V_d/A_{ef}

 $\sigma_{c,90,d}$ = 0,90 N/mm²

Hilfsfaktor $k_{c,90} = 1,00$

Kontrolle der Druckspannungen:

σ _{c,90,d} =	0,90	N/mm ²	<	k _{c,90} *f _{c,90,d}	1,9038	N/mm ²
-----------------------	------	-------------------	---	--	--------	-------------------

PASST!

5. Zusammenfassung

Kontrolle	Erfüllung der Anforderungen (%)		
Biegung	<mark>139</mark>		
Verschiebung	<mark>377</mark>		
Druck	211		

Die Festigkeitsanforderungen des Trägers sind erfüllt.