


All sizes are approximate and in cm

# Stärkeberechnung für Holzgartenhausdach

**Produkt: Kukka** 



# 1. Allgemeine Information

Kompanie: Revismo OÜ (www.revismo.com)

Ingenieur: Mirko Arras (39108154931)

Klient: Tuindeco International BV (<u>www.tuindeco.com</u>)

Produkt: Kukka

Datum: 26.06.2020

Verwendete Standards:

EN 338:2016 - Bauholz - Festigkeitsklassen.

EN 1991-1-3:2006 - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-3: Allgemeine Einwirkungen - Schneelasten.

EN 1991-1-4:2005 - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen - Wind Einwirkungen.

EN 1995-1-1:2005 - Eurocode 5: Bemessung und Konstruktion von Holzbauwerken - Teil 1-1: Allgemeines - Gemeinsame Regeln und Vorschriften für Gebäude.



# 2. Ausgangswerte:

### Tabelle 1

| Breite im Durchschnitt (b)                            | 44   | mm |
|-------------------------------------------------------|------|----|
| Höhe im Durchschnitt (h)                              | 155  | mm |
| Effektiver Querschnittshöhenversatz (h <sub>v</sub> ) | 100  | mm |
| Stützweite (L)                                        | 4460 | mm |
| Trägerabstand (s)                                     | 860  | mm |
| Stützlänge (I)                                        | 40   | mm |
| Stärkeklasse                                          | C24  |    |

# Eigengewicht:

#### Tabelle 2

| Belastung auf den Balken             | g <sub>k,a</sub> | 0,024 | kN/m² |
|--------------------------------------|------------------|-------|-------|
| Belastung auf den tragenden Brettern | <b>g</b> k,b     | 0,085 | kN/m² |
| Belastung auf das Abdeckmaterial     | g <sub>k,c</sub> | 0,060 | kN/m² |

Normative Belastungen, die auf das Dach einwirken:

#### Tabelle 3

| Belastung durch Eigengewicht                         | g <sub>k</sub>      | 0,20 | kN/m² |
|------------------------------------------------------|---------------------|------|-------|
| Windlast (Windzone 1; $v_{b,0} = 22,5 \text{ m/s}$ ) | q <sub>wind,k</sub> | 0,37 | kN/m² |
| Schneelast (Schneelastzone 2)                        | <b>q</b> schnee,k   | 0,60 | kN/m² |

### Schneedicke entsprechend der Schneelast:

### Tabelle 4

| Tabelle 4                                        |      |   |
|--------------------------------------------------|------|---|
| Neuschnee                                        | 0,60 | m |
| Stehender Schnee (mehrere Stunden oder Tage nach |      |   |
| nach Schneefall)                                 | 0,30 | m |
| Alter schnee (mehrere Wochen oder Monate nach    |      |   |
| Schneefall)                                      | 0,20 | m |
| Nasser Schnee                                    | 0,15 | m |



# 3. Materialeigenschaften

### 3.1 Normative Eigenschaften

Normative Eigenschaften des Materials:

#### Tabelle 5

| Biegestärke                                           | f <sub>m,k</sub>      | 24    | N/mm <sup>2</sup> |
|-------------------------------------------------------|-----------------------|-------|-------------------|
| Schnittstärke                                         | $f_{v,k}$             | 4     | N/mm <sup>2</sup> |
| Druckfestigkeit                                       | f <sub>c,90,k</sub>   | 2,5   | N/mm <sup>2</sup> |
| Durchschnittliches Elastizitätsmodul bei Längsschnitt | E <sub>m,0,mean</sub> | 11000 | N/mm²             |
| 5%-Wert des Elastizitätsmoduls bei Längsschnitt       | E <sub>m,0.5,k</sub>  | 7400  | N/mm <sup>2</sup> |

# 3.2 Berechnete Eigenschaften

#### Tabelle 6

| Dauerhaftigkeitsklasse der Belastungen |                          | Kurzzeitig |
|----------------------------------------|--------------------------|------------|
| Verwendungsklasse                      |                          | 2          |
| Geländefaktor                          |                          | 2          |
| Teilsicherheitsbeiwert des Materials   | γm                       | 1,3        |
| Modifikationsfaktor                    | k <sub>mod</sub>         | 0,9        |
| Querschnittsfaktor                     | k <sub>h</sub>           | 1          |
| Systemstärkefaktor                     | k <sub>sys</sub>         | 1,1        |
| Bruchfaktor                            | k <sub>cr</sub>          | 0,67       |
| Hilfsfaktor                            | k <sub>c,90</sub>        | 1          |
| Gewichtungsfaktor                      | <b>γ</b> G,1             | 1,4        |
| Teilkoeffizient der variablen Last     | γα                       | 1,45       |
| Schneelast Ladefaktor                  | $\Psi_{0,\text{schnee}}$ | 0,5        |
| Windlast Ladefaktor                    | $\Psi_{0, wind}$         | 0,6        |

# 3.3 Berechnete Eigenschaften des Materials:

#### Tabelle 7

| rabene /                                                                  |                       |       |                   |
|---------------------------------------------------------------------------|-----------------------|-------|-------------------|
| Biegestärke: $f_{m,d}$ = $(k_{mod}*k_h*k_{sys}*f_{m,k})/\gamma_m$         | f <sub>m,d</sub> =    | 18,28 | N/mm <sup>2</sup> |
| Schnittstärke: $f_{v,d} = (k_{mod} * k_{sys} * f_{v,k})/\gamma_m$         | $f_{v,d}$ =           | 3,05  | N/mm <sup>2</sup> |
| Druckfestigkeit: $f_{c.90,d} = (k_{mod} * k_{sys} * f_{c.90,k})/\gamma_m$ | f <sub>c.90.d</sub> = | 1,90  | N/mm <sup>2</sup> |



### 4. Trägerbelastung

#### 4.1 Normative Belastungen

Normative Belastungen, die auf den Träger einwirken:

Tabelle 8

| Belastung durch Eigengewicht: g <sub>k</sub> *= g <sub>k</sub> *s | g <sub>k</sub> *=        | 0,17 | N/mm |
|-------------------------------------------------------------------|--------------------------|------|------|
| Windlast: q <sub>wind,k</sub> *=q <sub>wind,k</sub> *s            | q <sub>wind,k</sub> *=   | 0,32 | N/mm |
| Schneelast: q <sub>schnee,k</sub> *=q <sub>schnee,k</sub> *s      | q <sub>schnee,k</sub> *= | 0,52 | N/mm |

### 5. Berechnung im Tragegrenzzustand

#### 5.1 Querschnittkontrolle

#### 5.1.1 Berechnete innere Spannungen

Auf den Träger wirken in STR-Belatungskombinationen die berechneten summierten Belastungen:

a) Dominierende variable Belastung ist Wind:

$$P_{d} = \gamma_{G,1} * g_{k} * + \gamma_{Q} * q_{wind,k} * + \gamma_{Q} * \Psi_{0,schnee} * q_{schnee,k} *$$

$$P_d = 1,08 \text{ kN/m}$$

# Wird nicht entscheidend!

b) Dominierende variable Belastung ist Schnee:

$$P_d = \gamma_{G,1} * g_k^* + \gamma_Q * q_{schnee,k}^* + \gamma_Q * \Psi_{0,wind} * q_{wind,k}^*$$

$$P_d = 1,27 \text{ kN/m}$$

#### Wird entscheidend!

c) Überprüfung der Berechnungssituation, bei der nur die Belastung durch Eigengewicht betrachtet wird:

$$P_d = \gamma_{G,1} * g_k^*$$

$$P_d = 0.24 \text{ kN/m}$$

#### Wird nicht entscheidend!

Berechnete innere Spannungen (maximal):

Biegemoment:

$$M_d = (P_d * L^2)/8$$
  $M_d = 3,16 \text{ kNm}$ 

Querkraft:

$$V_d = (P_d * L)/2$$
  $V_d = 2,83 \text{ kN}$ 



| 5  | 1. | 2 | Kont  | rolle | 711r | Rieg | ııng |
|----|----|---|-------|-------|------|------|------|
| J. | Τ, |   | NOTIC | Ulle  | Zui  | DICE | ulig |

Stärkebedingung:  $\sigma_{m,d} < f_{m,d}$ 

Querschnittswiderstandsmoment:

 $W=(b*h^2)/6$ 

 $W = 176183 \text{ mm}^3$ 

Berechneter Biegedruck:

 $\sigma_{m,d}$ =  $M_d/W$ 

 $\sigma_{m,d} = 17,94 \text{ N/mm}^2$ 

### Kontrolle der Biegedrucke:

| $\sigma_{m,d}$ = | 17,94 | N/mm2 | < | f <sub>m,d</sub> = | 18,28 | N/mm2 |
|------------------|-------|-------|---|--------------------|-------|-------|
| PASST!           |       |       |   |                    |       |       |

### 5.1.3 Kontrolle zur Verschiebung

Stärkebedingung:  $\tau_d < f_{v,d}$ 

Querschnittsfläche:

 $A=b*h_v$ 

A= 4400 mm<sup>2</sup>

Berechneter Verschiebungsdruck:

 $\tau_d = (3/2)*(V_d/A)*(1/k_{cr})$ 

 $\tau_{d} = 1,44 \text{ N/mm}^{2}$ 

### Kontrolle des Verschiebungsdrucks:

| $\tau_d$ = | 1,44 | N/mm2 | < | f <sub>v,d</sub> = | 3,05 | N/mm2 |
|------------|------|-------|---|--------------------|------|-------|
| PASST!     |      |       |   |                    |      |       |



| 5.1.4   | Kontrolle zum   | Druck (im    | Stützbereich' |
|---------|-----------------|--------------|---------------|
| J. I. T | NOTICIONE ZUITI | DI GCK (IIII | JULIZBUILLI   |

Stärkebedingung:  $\sigma_{c,90,d} < k_{c,90} * f_{c,90,d}$ 

Effektive Druckfläche:

 $A_{ef} = b*I$ 

 $A_{ef} = 1760 \text{ mm}^2$ 

Berechnete Druckspannung:

 $\sigma_{c,90,d}\text{= V}_d\text{/A}_{ef}$ 

 $\sigma_{c,90,d}$  = 1,61 N/mm<sup>2</sup>

Kontrolle der Druckspannungen:

|        | $\sigma_{c,90,d}$ = | 1,61 | N/mm2 | < | k <sub>c,90*fc,90,d</sub> | 1,90 | N/mm2 |
|--------|---------------------|------|-------|---|---------------------------|------|-------|
| PASST! |                     |      |       |   |                           |      |       |

# 6. Zusammenfassung

| Kontrolle    | Erfüllung der Anforderungen (%) |  |  |  |
|--------------|---------------------------------|--|--|--|
| Biegung      | 101                             |  |  |  |
| Verschiebung | 211                             |  |  |  |
| Druck        | 118                             |  |  |  |

Die Festigkeitsanforderungen des Trägers sind erfüllt.